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The notion of provability logic stems from the idea of interpreting the O in modal logic as a provabil-
ity operator in a sufficiently strong theory. The most well known provability logic is the modal logic
Godel-Léb (GL), for which it was shown in 23] by Robert Solovay that it is complete for the provabil-
ity of Peano Arithmetic (PA). However, we can find many more provability logics that extend GL by
considering the provability of a theory T over a different metatheory U. This notion was indepen-
dently introduced by Sergei Artemov [3| and Albert Visser [27]. Similarly, we might consider tuples of
different theories and interpret the provability of each as a different modality, giving us multi-modal
provability logics which have been first studied by Craig Smorynski [22] and Tim Carlson [8]. The
easiest class of such multi-modal provability logics are bimodal provability logics, where we consider
the provability of two theories 7', U under a common metatheory 7' N U. Note that one might con-
sider variant notions of bimodal provability logic, such as a different metatheory or different kinds of
provability predicates (see e.g. [12}26]).

While a lot has been done in the field of bimodal provability logics, such as the study and classi-
fication of different logics, as well as their semantics and decidability [5} [6, |25} [28], its proof theory
did not receive much attention yet. Although the calculus we introduce is new, we build upon the
existing literature of proof theory for the provability logic GL and modal logic in general.

The first technique we employ are labelled systems, which can be traced back to [14], where Stir
Kanger provided a cut-free system for S5 (he talks about spotted formulas instead of labelled ones);
however, labelled calculi have been popularised only later in broader studies of non-classical logics
(see e.g. [11} 16} 24]). The advantage of labels is that they allow us to internalise the structure of
semantics into the calculus. In our setting, we use labelled formulas, written as = : A, and two kinds
of relational atoms, xRy and xSy. Labelled sequents then have the form R,T" = 2, where R is a set
of relational atoms and I" and (2 are sets of labelled formulas. While labelled formulas encapsulate
truth or falsity of formulas on states in a Kripke model, the relational atoms can be interpreted as the
structure of the underlying Kripke frame. This not only gives us easy semantic completeness but also
allows for a modular adaptation of the system to other logics.

The second proof theoretic technique relies on non-wellfounded proofs, which are a generalisation
of cyclic proofs. Cyclic proof systems were originally developed for the modal p-calculus (see [17])
where the circularity encapsulates the meaning of the fixpoint operators. The recursiveness that can
be captured by cyclic proofs has also been adapted for induction (7, 21], propositional dynamic logic
(10], and other modal fixpoint logics, such as GL and Grz [19,[20]. The latter of these is interesting for
our purposes as we build on the results of non-wellfounded and cyclic proofs for GL.

More specifically, we adapt the labelled system ¢GL from [9] into a bimodal setting. The general
idea of ¢GL is that the full Kripke semantics for GL is internalised. While it is easy to do that for the first-
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order condition of transitivity, the second-order property of converse-wellfoundedness is internalised
by the progress condition on non-wellfounded proofs. The idea is essentially that proof search failed if
and only if we can obtain a countermodel from it. Usually such a countermodel can be extracted from
a branch of a proof tree that is not closed: either that branch got stuck and no rule can be applied to
its leaf, or the branch continues indefinitely. Consider now a proof with an infinite branch such that
the countermodel extracted from it contains an infinite chain. Such a countermodel, however, is not
a countermodel for GL. We therefore call such a branch progressing, and allow progressing branches
to occur in a valid proof of GL.

We call our system labCS™ for which we show that it is sound and complete for the basic bimodal
provability logic CS. The logic is basic insofar as it is a sublogic of any bimodal provability logic (ac-
cording to the description at the beginning). As we model our system after the semantics of CS, the
proof of both soundness and completeness is also done via models. Here, we rely on interpreting se-
quents (not only formulas) in models. Soundness is done via local (semantic) soundness of the rules
as well as soundness of the progress condition. Completeness is shown by a countermodel extraction
from failed proofs.

For ongoing research, we conjecture that the system labCS™ can be used as a tool towards de-
scribing other bimodal provability logics. This should be simple for Kripke-frame complete logics
with a first-order correspondence, such as CSM and P, as we can write the first-order conditions as
additional rules (see [4, Chapter 8] for an overview of bimodal provability logics where these logics are
also defined). The bimodal provability logic of PA and Zermelo-Fraenkel set theory (ZF), called ER, is
Kripke-frame incomplete and thus poses an interesting obstacle for our setup. However, there exists
a generalised Kripke semantics for this logic due to Albert Visser [25]. To internalise the second-order
condition for the admissible sets of the models for ER, we might utilise the non-wellfoundedness of
our proofs by adding an additional progress condition. The idea is similar to before: an infinite pro-
gressing branch should not give us a countermodel for the logic. Thus, the limit model read out from
such a branch has to have a valuation which is not an admissible set in the generalised semantics.

Lastly, we want to highlight further ideas on how to use labCS™ as a basis for other sequent cal-
culi. This might include other multi-modal provability logics such as GLP [13] or GR [29], as well as
non-normal provability logics such as GLS [23, §5] and GL,, [2]. We might also translate some of these
systems into sequent systems without structure (i.e. without labels, nestings or anything alike). This
can be done by sequentialising the proofs by first transforming them into a normal form, similar to
(15,(18]. This might allow us to gain a pure sequent system which, due to its construction, is immedi-
ately sound and complete. The reduced structure of such a system might then allow for easier proof
theoretic investigations such as proving properties like interpolation (see e.g. [1,[20]).
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